
Blaupunkt (DMS ??)

 for controlling a Blaupunkt car radio.

It is basically a 2 wire (rx/tx) async. serial protocol with 9 bits of data where the 8th bit is used for synchronisation.

That made it easy to interface it to a player or PC because you can use the serial port.
The only documents that're left is one sheet of paper containing the initial communication between a cd changer and the radio and

the source code.

Here is the protocol cut:

radio direction,info changer

 baudrate 4800

0x17B (3 times) -> no response

0x17C (3 times) -> no response

0x17D (3 times) -> no response

0x17E (3 times) -> no response

0x17F (3 times) -> no response

0x180 -> 0x180

0x48 -> 0x48

0x02 -> 0x02

0x14F ->, change in baudrate to 9600 no response

0x180 -> 0x180

0x9F -> 0x9F

0x14F -> no response

0x180 -> 0x180

0xA1 -> 0xA1

0x14F -> no response

0x180 -> 0x180

0xAD -> 0xAD

0x14F -> no response

0x180 -> 0x180

0x48 -> 0x48

0x01 -> 0x01

0x14F -> no response

0x10F <- 0x10F

0x48 <- 0x48

0x01 <- 0x01

0x14F <- 0x14F

0x103 <- 0x103

Page 1 of 13� �

10/07/2006

Kenwood

The protocoll used here is a synchron serial protocoll.

First let us start with the connector pinout.

The pins have a 2.54mm distance, so you can simply build a plug using some prototyping board

New connector pin-out (for head units >'99?) Thanks to Patrick Loef for this information.

0x20 <- 0x20

0x09 <- 0x09

0x20 <- 0x20

0x00 <- 0x00

0x14F <- 0x14F

0x10B <-(text info ???) 0x10B

0x20 <- (8 times space) 0x20

0x14F <- 0x14F

0x101 <-(disc / track info ???) 0x101

0x09 <- 0x09

0x01 <- 0x01

0x14F <- 0x14F

0x10D <- (disc / track / time info (BCD) ??) 0x10D

0x01 <- 0x01

0x09 <- 0x09

0x43 <- 0x43

0x57 <- 0x57

0x14F <- 0x14F

pin direction description

1 O CH-REQH - Request output to changer; "Low" : Request

2 - Ground

3 - Vcc +12V

4 O CH-CON - Changer control; "High" : Operation mode "Low" : Standby

5 I CH-MUTE - Mute request from changer; "High" : Mute

6 - AGND - Audio Ground

7 O CH-RST - Reset output to changer

8 I Audio right channel

Page 2 of 13�

10/07/2006

The following works only with newer kenwood radios.

Older models have the same pinout but use some more simple protocol ...

The clock low and high periods had a length of 4us.
The data is transfered in bytes (8 bits ... MSB first), data is valid at the rising clock edge..

The data transfer is initiated either by the radio or the changer, the initiator just pulls its fs line low.
When the changer starts the communication it gets 40 clocks from the radio (4 bytes addr + 1byte data size).

The radio then sets its fs to low if it accepts the transfer.
When a transfer is initiated by the radio by setting its fs low it waits for the changer to answer with a low fs,
then it sends the 4 byte addr header, the size byte for the data and the data.

9 I CH-REQC - Request input from changer; "Low" : Request

10 I CH-DATAC - Data input from changer

11 O CH-DATAH - Data output to changer

12 I Audio left channel

13 I/O CH_CLK - Clock input/output for changer

Packet header, direction: both

byte log value (r->cdc) description

0 0x29
destination
address

1 0x10
destination
address

2 0x1E
own
address

3 0x00
own
address

4 x data size

Page 3 of 13

10/07/2006

From this point I only write the data part of a packet

in bytes

5 x
first data
byte

4+data size x
last data
byte

initialisation handshake answer, direction: cdc->r

byte log value description

0 0x11 command identifier

1 0xA4 cycle numer of the above packet

2 0x00 ??

3 0x01 ??

4 0x02 ??

send after above packet, maybe radio identification and caps, direction:
r->cdc

byte log value description

0 0x20 command identifier

1 0x00

2 0x11

3 0x01

4 0x03

5 0x0B

6 0x0B

7 0x07

8 0x05

9 0x83

10 0x84

11 0xC0

12 0xC1

13 0xC2

14 0xC3

15 0xC4

16 0xC5

Page 4 of 13

10/07/2006

17 0xC6

send after above packet, maybe init ack from radio, direction: r->cdc

byte log value description

0 0x20 command identifier

1 0x01

2 0x11

3 0x29 changer address

4 0x10 changer address

5 0x00 maybe last bytes of cmd 0x11(cdc->r)

6 0x01 maybe last bytes of cmd 0x11(cdc->r)

7 0x02 maybe last bytes of cmd 0x11(cdc->r)

changer caps info, send after above packet, direction: cdc->r

byte log value description

0 0x70 command identifier

1 0x02

2 0x0A maybe disc count

3 0x3F

4 0x03

5 0x0C

6 0x02

play position info, direction: cdc->r

byte log value description

0 0x60 command identifier

1 0x02 maybe sub command id

2 0x00

3 0x00

4 0x00 error code, 0 is no error

5 0x00 changer status (load, eject,)

6 0x02 play status (1 - play, 2 - pause)

Page 5 of 13

http://www.mictronics.de/?page=cdc_proto

7 0x00

8 0x01

9 0x00
track order mode (normal 0, tscan 1,
dscan 2,random 6, ...)

10 0x04

11 0xBB
some bcd number field, displayed when
field 3 != 0

12 0x01

13 0x0B track number

14 0x07 disc number

15 0x01 min (bcd)

16 0x22 sec (bcd)

17 0x62 min disc (bcd)

18 0x26 sec disc (bcd)

19 0x09 min remain (bcd)

20 0x30 sec remain (bcd)

text info request, direction: r->cdc

byte log value description

0 0x42 command identifier

1 0x02

2 0x07 disc number

3 0x0A track number

4 0x00
text section number, sections had 12 bytes
size here

5 0x00

6 0x80 text id (0x80 -> name 0x81 -> artist)

text info send after request, direction: cdc->r

byte log value description

0 0x62 command identifier

1 0x02

2 0x07 disc number

3 0x02

Page 6 of 13�

Using the information above you should have some starting point if you are intrested in doing your own project, it is simple to build
a converter to send and receive these commands using a pc so you can find out the meaning of other commands and fields if you need.

Pioneer

The pioneer IP bus uses a 2 wire differential signal for communication.

An equal level on both lines is a logical low while a high is encoded as a voltage difference of some 100mV.
I think a CANbus tranceiver should work here.

The data transfer is initiated by either the cd changer or the radio.The initiator generates a high pulse (ca. 170us) and a following low pulse (
Then the data transfer starts, a 1 is encoded as a high-low sequence with a duration of ap. 20us for both levels and a 0 consists of a 33us high and a

The data is now transfered in bytes with MSB first, the 8th bit is an odd parity bit.At the end of the 3rd and all following Bytes there is an additional bit inserted after the parity where the
receiver acknowledges the transfer.
This is done by holding the data lines in a high state after the initiator sets them low.If this ack is missing the transfer is stopped.

The timings may vary because the real data is encoded in the pulse to space length relation.

The first 3Bytes seem to be some kind of device address.The changer I used transfered a 0x88,0x68,0x00 here while the radio sended 0x88,0x
The next 4 bits were always high. After that a size byte and then size bytes were transfered. The last byte in the transfer is a checksum generated adding the values of all data beginning

with the 4bit sequence (= 0x0F).

In the following part I only will write the raw data excluding size and cheksum field.

Each command transfered was first answered by some acknowledge packet consisting of a single 0xA1.

(which looks like: 0x88 0x08 0x06 0xF 0x02 0xA1 0xB2 -> 0xB0 is the checksum).

4 0x0A track number (0 -> disc title transfer)

5 0x00
text section number, sections had 12 bytes
size here

6 0x09

7 0x00

8 0x80 text id (0x80 -> name 0x81 -> artist)

9..20 x text

commands send when keys on the radio were pressed, direction: r->cdc

byte
log value
(play)

fwd
(toggle)

bwd
(toggle)

disc-
(toggle)

disc+
(toggle)

description

0 0x50 0x50,0x50 0x50,0x50 0x50,0x50 0x50,0x50 command identifier

1 0x02 0x01,0x04 0x01,0x04 0x02,0x00 0x02,0x00
maybe event id (0 all up, 01 down
toggle, 04 up, 06 hold)

2 0x02 0x02,0x02 0x02,0x02 0x02,0x02 0x02,0x02

3 0x00 0x02,0x02 0x02,0x02 0x00,0x00 0x00,0x00

4 0x07 0x01,0x01 0x02,0x02 0x04,0x00 0x02,0x00 key id

5 0x00 0x05,0x05 0x06,0x06 0x00,0x00 0x00,0x00

Page 7 of 13

For now I just figured out some very basic things like the fields where time, track and disc number are encoded and also some
key codes the radio sends. There are many more fields in the packets where i still don't know the meaning of.

(I just got the radio from a friend for some days and so I couldn't do so much more on it ... however .. if somebody is intrested in some
more information and is wiling giving me a radio and a changer for some weeks I'll try to do some more)

I have also designed a small circuit using a AT90S2313 controller which can be used for logging the transfer through the pc serial port and also
to send commands.

The following packet sended by the changer contained the time disc and track information.

modus:

cdt: bit0: (1:cdtext),(0:normal)

The text information was encoded within this packet

Possibly pinout of Pioneer headunit in Renault Espace III

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Info command modus mcd disc min sec track

Data 0x61 0x10 0x06 0x01 0x20 0x04 0x16 0x01 0x06 0x01 0x00 0x00 0x01 0x00 0x3

Value 0x02 0x07 0x08 0x10 0x11 0x13 0x14 0x15 0x16

Info ready
track
blink

pause
ready and disc
blink

disc
blink

load and disc
blink

eject and disc
blink

load eject

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12
13-
22

Info command modus disc track
text
seqence
number

 text

Data 0x61 0x10 0x06 0x01 0x20 0x04 0x38 0x09 0x00 0x06 0x00 0x00 0x00 0x00

Page 8 of 13

10/07/2006

Panasonic

The protocol panasonic uses is of the serial sync. type. There is one data line, a clock line and a sync line the changer uses to send data to the radio.

The radio to changer communication is done by some signals known from standard IR remote controls (without a carrier) using one dataline.
This remote control signal is pulse width modulated,the dataline is active high.

After an initail high(9ms) low(4.5ms) there follows a 32 bit sequence with a 0 encoded as 550us high,550us low and a 1 as 550us high,1.7ms low
If the low pulse in the init phase is only 2.25ms long it is just a signal send periodical when a key is hold down and there are no data bits.
The data is transfered lsb first, the 1st byte is 0xFF-0th byte and the 3rd byte is 0xFE-2nd byte.The 2nd byte is the command.

The changer to radio communication transfers the data in bytes msb first, the data is valid at the falling clock edge and a low pulse of one half clock period is sent after the first and the last
byte of the transfer on the sync line..The clock period is arround 8us.

There was only one packet containing state, time, disc and track information.

Byte 0 1 2 3 4 5 6 7

Page 9 of 13

10/07/2006

state:

Info disc(b0-b3) track min sec state

Data 0xCB 0x42 0x09 0x02 0x56 0x00 0x30 0xC3

Value 0x00 0x10 0x20 0x04 0x08

Info normal scan random random repeat

Page 10 of 13� Mictronics � Michael's Electronic Projects �

This should be the pinout for the Clarion 13-pin DIN connector which is used for Clarion C-Bus.

Ford ACP

Ford ACP is a network protocol used by the Head Unit to communicate with and control audio devices such as the Ford 6 disc CD Changer and the Nokia integrated cell phone or Ford
Telematics units.

It is based on RS485 with 9 bit character data at 9600 baud.

A MAX-481 low power RS485 transceiver will work as interface between a serial USART and ACP bus.

Pin Function
1 ACP +

2 ACP Shield
3 GND
4 n/c

5 Audio Left +
6 Audio Right +

7 ACP -
8 CDENABLE

9 +12V Power (unfused)
10 Audio Shield
11 Audio Left -

12 Audio Right +

You will need an AMP plug to connect to the head unit.

AMP Multilock Series 40 cable connector housing with 12 pins or sockets.

The CDENABLE line is 0V when the radio is off and +10V when it is on and can be used as a standby switch for the yampp.
It is not a power supply and can't drive a relay directly.

Communication

Page 11 of 13

10/07/2006

* a delay of 1642us (16 Bit times) will indicate a start of new message
* the 9th bit in a byte must be set in the last byte of message to indicate the end of message

* Acknowledge is given with 0x06

Byte 0 - Medium/Priority, should be 0x71

Byte 1 - Changer functional address, should be 0x9A or 0x9B

Byte 2 - Head unit address, 0x80 on receive, 0x82 on transmit

Byte 3 - Command control byte

� 0xE0 - Handshake 1, byte 4 should be 0x04

� 0xFC - Handshake 2, byte 4 must be the same for transmit and receive
� 0xC8 - Handshake 3, byte 4 must be the same for transmit and receive
� 9xFF - Current disc status in byte 4

� Byte 4 - 0x00 Disk OK
� Byte 4 - 0x01 No disc in current slot
� Byte 4 - 0x02 No disc at all
� Byte 4 - 0x03 Check current disk
� Byte 4 - 0x04 Check all disc

� 0xC2 and 0xD0 - Change or request current disc
� Byte 1 - 0x9A - command to change disc
� Byte 1 - not 0x9A - request current disc
� Byte 4 - disc number

� 0xC1 - Control command
� Byte 4

� Bit 0 - Fast search
� Bit 1
� Bit 3
� Bit 4 - change Random status
� Bit 5 - change Loudness status
� Bit 6 - change Play/Stop status
� Bit 7

� Send back byte 4 with actual mode
� 0xC3 - Next track

� Byte 4 - Track number
� 0x43 - Previous track

� Byte 4 - Track number

The last byte in all message is a checksum of all previous bytes. Simply add all bytes of message to calculate the checksum.

Message examples
To display current play time, disc and track number:

No disc message:

Byte 0 1 2 3 4 5 6
0x71 0x9B 0x82 0xD0 Disc No Track No Minutes Seconds

Page 12 of 13

All informations are given without guarantee. Please mail for update or change requests.

Byte 0 1 2 3 4
0x71 0x9B 0x82 0xFF 0x01

Page 13 of 13�

